POLYVINYLIC DERIVATIVES OF 4-ALLYLDITHIOCARBOXYLATE-5-HYDROXY-3-METHYL-1-PHENYLPYRAZOL

Alfonso Oliva*, Aurora Molinari and Javier Caroca Instituto de Química, Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile

Abstract: Polymeric derivatives of 4-alkyldithiocarboxylate-5-hydroxypyrazoles have been prepared by bulk vinylic homo and copolymerization of 4-allyldithiocarboxylate-5-hydroxy-3-methyl-1-phenylpyrazol.

Introduction

The 4-alkyldithocarboxylate-5-hydroxypirazoles I are heterocyclic chelating ligands with interesting extractive properties, where the 5-hydroxylic and the thiocarbonyl group of the 4-dithiocarboxylate moiety are responsible for the chelation of metal ions. These ligands are prepared by condensation of 5-pyrazolones with carbon disulfide and alkyl halides, in the presence of bases like n-butyllithium, sodium acetate or quaternary ammonium hydroxides (1-4).

R = Alkyl, Phenyl; $R_1 = Methyl$, Hydroxyl; $R_2 = Alkyl$, Benzyl, Allyl

The derivatives I allow the solvent extraction of several divalent transition metal ions (5) and the solvent extraction separation of Cu(II) from Fe(III) in acidic lixiviation solutions of a copper mineral with a high content of iron (6). Recently, these solvent extraction studies were extended to toxic mercury, lead and cadmium elements and it was demonstrated that I (R = Phenyl; R_1 = Hydroxy; R_2 = n-Dodecyl) can be used to separate Hg(II) from Pb(II) and/or Cd(II) at pH 1, in a single extraction step (7).

When R_2 in the general structure I is an allylic substituent it is possible to carry out vinylic polimerization and in order to get chelating polymers containing the 4-alkyldithiocarboxylate-5-hydroxypyrazol moiety, we have studied the bulk homopolymerization of 4-allyldithiocarboxylate-5-hydroxy-3-methyl-1-phenylpyrazol 1 and the copolymerization with styrene or acrylamide.

Results and Discussion

The bulk vinylic homopolymerization of 1 was performed in a opened Pyrex tube by heating 0.6007 g (2.07 mmol) of the monomer and 0.09 mmol of catalytic benzoyl peroxide or aluminum chloride in a silicon oil bath at 120° C during 32 h (8). At the end of the reaction, a flowable orange to red liquid was formed, becoming to a glasslike solid 2 at room temperature (Ec. 1). Following the same methodology, the 4-allyldithiocarboxylate 1 was bulk copolymerized with styrene or acrylamide, using a 1:1 molar ratio of the monomers. Thus, 2.07 mmol of 1, 2.07 mmol of styrene or acrylamide and 0.09 mmol of benzoyl peroxide or aluminum chloride were heated at 100-105° C during 32 h., to afford 3a or 3b as a dark red likeglass solid in both cases (Ec. 2). The progress of the homo and copolymerization was analyzed by ¹H RMN, monitoring the dissapearance of the vinyl protons signals at 5-7 ppm or the displacement of the CH₂S doublet signal from 4.07 ppm in th allylic dithiocarboxylate 1 to 3.35-3.47 ppm in the polymers.

$$\begin{array}{c} \text{SCH}_2\text{CH}=\text{CH}_2 \\ \text{CH}_3 \\ \text{N} \\ \text{OH} \\ \text{Ph} \\ \text{1} \\ \text{OH} \\ \text{Ph} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{CH}_2 = \text{CH-R} \\ \\ \frac{(\text{PhCO}_2)_2 \text{ or AlCl}_3}{100\text{-}105^\circ \text{ C, } 32 \text{ h.}} \\ \text{OH} \\ \text{N} \\ \text{N} \\ \text{N}$$

The polymers prepared were characterized by 1H NMR , IR and viscosimetry. The general features in the 1H NMR spectrum are a complex multiplet of the chain CH₂CH at 1.33-2.72 ppm, a slightly wide singlet of the heterocyclic CH₃ at 2.33-2.38 ppm , a diffuse doublet of the CH₂S group at 3.35-3.47 ppm and a complex multiplet of the aromatic protons at 6.95-7.98 ppm (Table 1). The displacement of the CH₂S signal to higher field during the polymerization is in agreement with the chemical shift observed when this group is part of a saturated alkyl chain (3.35-3.56 ppm) (1, 4). In the IR, the polymers also display the wide and weak absorption between 3200-2700 cm- 1 , attributed to the associated hydrogen bonding vibration of the enolic hydroxy group in the monomer (1, 9). Viscosities were measured in chloroform with a Ostwald viscosimeter at 25 \pm 0.5 °C and molecular weights were estimated using the Mark-Houwink-Sakurada equation (Table 2) (10,11)

Table 1. ¹H NMR data of polymers 2 - 3b synthesized.

Polymer	-CH₂CH-	CH ₃	CH ₂ S	Ph	NH ₂
2	1.33 - 2.07	2.33	3.40	7.05 - 7.98	
3a	1.45 - 2.08	2.35	3.35	6.95 - 7.97	-
3b	1.45 - 2.77	2.38	3.47	7.07 - 7.95	6.23

^{*60} MHz, CDCl₃, internal TMS, ppm

Table 2. Intrinsic viscosity, estimated molecular weight and glass transition temperature of polymers 2 - 3b

Polymer	η (gdl ⁻¹)	Mw	Tg (°C)
2	0.808	1.0x10 ⁵	91
3a	0.795	1.7x10 ⁵	93
3b	0.532	8.0x10 ⁴	87

Conclusions.

In conclusion, chelating vinyl polymers containing the 4-methylenedithiocarboxylate-5-hydroxy-3-methyl-1-phenylpyrazol group in the polymeric matrix have been prepared by the homo and copolymerization of 4-allyldithiocarboxylate-5-hydroxy-3-methyl-1-phenyl pyrazol. These chelating polymeric matrixes can be used in the solid-liquid separation and preconcetration of metal ions. Studies on this matter are in progress.

Acknowledgements.

The authors wish to thank financial support from the Direction de Investigación de la Universidad Católica de Valparaíso, Chile (Proyecto DI 125.750-02)

References

- (1) R. Maurelia, G. León and A. Oliva, Synth. Commun., 20, 477 (1990).
- (2) A. Oliva, G. Leon and R. Maurelia, Org. Prep. Proc. Int., 22, 511 (1990).
- (3) A. Oliva, I. Castro, C. Castillo and G. Leon, Synthesis, 481 (1991).
- (4) A. Oliva, A. Molinari and R. Ariz, Synth. Commun., 26, 611 (1996)
- (5) R. Maurelia, P. Villalobos, C. Bahamondes, D. Carrillo, G. León and A. Oliva, Bol. Soc. Chil. Quim., 37, 175 (1992).
- (6) A. Molinari, R. Ariz and A. Oliva, Talanta, 43, 545 (1996).
- (7) A. Oliva, A. Molinari, F. Zúñiga and P. Ponce, Microchim. Acta, 140, 201 (2002).
- (8) S.R. Sandler, W. Karo, J. Bonesteel and E.M. Pearce, "Polymer Synthesis and Characterization", A Laboratory Manual, Academic Press Ed., New York, USA (1998).
- (9) R.L. Pecsok, L.D. Shields, T. Cairns and I.G. McWilliam, "Modern Methods of Chemical Analysis", 2nd Ed., John Wiley&Sons Inc., New York, USA (1976).
- (10) M.P. Stevens, "Polymer Chemistry", 3rd Ed., Oxford University Press, New York, USA (1999).
- (11) J. Brandrup and E.H. Immergut, eds., "Polymer Handbook", 2nd Ed., Wiley Interscience, New York, USA (1975).

Received on April 11, 2003